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SUMMARY

This study presents characteristic-based split (CBS) algorithm in the meshfree context. This algorithm is
the extension of general CBS method which was initially introduced in finite element framework. In this
work, the general equations of flow have been represented in the meshfree context. A new finite element
and MFree code is developed for solving flow problems. This computational code is capable of solving
both time-dependent and steady-state flow problems. Numerical simulation of some known benchmark
flow problems has been studied. Computational results of MFree method have been compared to those
of finite element method. The results obtained have been verified by known numerical, analytical and
experimental data in the literature. A number of shape functions are used for field variable interpolation.
The performance of each interpolation method is discussed. It is concluded that the MFree method is
more accurate than FEM if the same numbers of nodes are used for each solver. Meshfree CBS algorithm
is completely stable even at high Reynolds numbers. Copyright q 2007 John Wiley & Sons, Ltd.
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1. INTRODUCTION

Simulation of physical phenomena requires solving partial differential equations that govern those
problems. It is not possible to find exact mathematical solution for some partial differential equa-
tions. To solve the problem, scientists often use numerical and computational solutions. Over the
years many numerical methods have been developed such as finite difference method, finite volume
method and finite element method. In these methods, the spatial domain where the partial differen-
tial governing equations are defined is often discretized into meshes. Using simple mathematical
function for interpolation over every small mesh, partial differential equation can easily be changed
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to a system of algebraic equations. Creation of suitable meshes is very essential for acquiring ac-
curate results. Mesh generation process is so time consuming that engineering scientists decided
to develop meshless numerical methods to solve partial differential equations. The meshfree or
MFree method is defined as a method for numerically solving partial differential equations with-
out the use of any predefined mesh. MFree methods only use a set of nodes scattered within the
problem domain as well as sets of nodes scattered on the boundaries of the domain to represent
the problem domain and its boundaries [1]. The meshfree methods appear particularly effective
for three-dimensional irregular domains and moving boundary problems where mesh generation
can be very expensive.

There are some meshfree methods which have been developed by now such as element-free
Galerkin method (EFG), meshless local Potrove Galerkin method (MLPG) and smooth particle
hydrodynamics or SPH method. Generally, there are two types of meshfree method, weak-form
meshfree method such as EFG method and strong-form meshfree method such as SPH method. The
SPH method one of the pioneering meshfree methods, was initially introduced by Lucy, Gingold
and Monoghan to solve three-dimensional astrophysical problems [2, 3]. To deal with complex
problems having moved boundaries, the idea of using meshfree method in engineering problems has
been arisen for eliminating meshing and simplifying refining processes and consequently, lowering
computational cost. In mesh generation point of view, meshfree method can be categorized into
the domain discretization methods such as FDM and the boundary only discretization methods
such as meshless boundary methods [4–6]. Meshfree method has been employed by many authors
for solving engineering problems [7–9]. Among them numerical simulations of flow problems are
very challengeable due to the nonlinear behaviour of their governing equations. These complexities
cause the flow patterns to be completely different in various velocities and geometries, so that
many algorithms are not suitable enough to handle all phenomena happening in fluid dynamics.
The nonlinearity of fluid dynamics equations is due to the derivation of fluid dynamics equation in
Eulerian view. Fluids continuously tend to deform when they are subjected to deviatoric stresses,
therefore some researchers prefer to use fluid dynamics equations in Eulerian view. In Eulerian
view, the major difference between fluid dynamics equations and the governing equations of solids
which are derived in Lagrangian view is the presence of convective term in its equations. These
terms cause the equation of fluid dynamics not to be self-adjoint. Therefore, for convection-
dominant problems, the Galerkin procedure is no longer optimal and it is here that most of the
fluid mechanics problems lie.

For fluid dynamics problems, the meshfree methods have recently been employed. Liu et al.
[10] used the reproducing kernel particle method (RKPM) with SUPG formulation to solve two-
dimensional advection–diffusion equation. Sadat and Couturier [11] employed the diffuse element
method (DEM) with the project method to study the laminar natural convection problem. Yagawa
and Shirazaki [12] applied free mesh method (FMM) with the weighed residual-Galerkin method
to unsteady two-dimensional incompressible viscous flow. Cheng and Liu [13] adopted the finite
point method (FPM) with the discretization defined by the positions of points to analyse two-
dimensional driven cavity flow. Kim and Kim [14] presented some analyses of fluids by meshfree
point collocation method (MPCM). A new RBF collocation scheme and kernel radial basis func-
tions (RBFs) have been discussed by Chen. The kernel RBF which he applied in his work is a
characteristic meshfree shape function [15].

This study presents characteristic-based split (CBS) algorithm in the meshfree context. This
algorithm is the extension of general CBS method which was initially introduced by Zienkiewicz
and Codina in finite element framework [16]. The foremost advantage of this method is the
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capability of solving either incompressible or compressible subsonic and supersonic flows by the
same algorithm [16].

In this work, the general equations of flow have been discretized in the meshfree context.
A finite element and MFree code is developed for solving flow problems. This computational code
is capable of solving both time-dependent and steady-state flow problems. Numerical simulation of
some known benchmark flow problems has been studied. Computational results of MFree method
have been compared to those of finite element method. The results obtained, have been verified by
known numerical and experimental data in the literature. A number of shape functions are used
for field variable interpolation. The performance of each interpolation method is discussed.

2. NUMERICAL FORMULATION

2.1. General equations

The general equations of fluid mechanics, with small modifications, can be written as follows [17]:
Mass conservation:

��

�t
= 1

c2
�p
�t

= −�Ui

�xi
(1)

Momentum conservation:

�Ui

�t
=− �

�x j
(u jUi ) + ��i j

�x j
− �p

�xi
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In the above, we define the mass flow fluxes as

Ui = �ui (3)

Energy conservation:
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In all of the above equations ui is the velocity component, � is the density, E is the specific energy,
p is the pressure, T is the absolute temperature, �gi represents body forces and other source terms,
k is the thermal conductivity, and �i j are the deviatoric stress components given by the following
equation:

�i j = �

(
�ui
�x j

+ �u j

�xi
− 2

3
�i j

�uk
�xk

)
(5)

where �i j is the Kroenecker delta �i j = 1, if i = j and �i j = 0 if i �= j . The equations are completed
by the universal gas law when the flow is coupled and compressible:

p= �RT (6)

where R is the universal gas constant.
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2.2. Characteristic-based split algorithm

The split process was initially introduced by Chorin [18] for incompressible flow problems in the
finite difference framework. After that split method was extended to finite element context and
employed for different applications of incompressible flows [19–21]. However, the algorithm in its
full form was first introduced in 1995 by Zienkiewicz and Codina [16] to solve the fluid dynamics
equations of both compressible and incompressible flows. The foremost advantage of this method
is the capability of solving either incompressible or compressible subsonic and supersonic flows
by the same algorithm [17].
2.3. The split temporal discretization

Using Equation (2), the momentum conservation equation can be written as follows [17]:
�Ui

�t
=− �

�x j
(u jUi ) + ��i j

�x j
+ �gi + Qn+�2

i (7)

with Qn+�2 being treated as a known quantity evaluated at t = tn + �2�t in a time increment �t .
In the above equation

Qn+�2
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(8)
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In this

�p= pn+1 − pn (11)

Using the characteristic-Galerkin process, Equation (7) can be rewritten as follows [17]:
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At this stage by using the split procedure a suitable approximation for Q is substituted into
the equations which allows the calculation to proceed before pn+1 is evaluated. Two alternative
approximations are useful as Splits A and B, respectively. In this paper, Split A was used. In this
method, an auxiliary variable U∗

i is defined such that [17]:
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This equation will be solved subsequently by an explicit time step applied to the discretized form
and a complete solution is now possible. The ‘correction’ given below is available once the pressure
increment is evaluated:

�Ui =Un+1
i −Un

i =�U∗
i − �t
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�xi
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2
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i

�xk
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From Equation (1), we have
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Replacing Un+1 by the known intermediate, auxiliary variable U∗ and rearranging after neglecting
higher-order terms (�t3, �t4, . . .), we have [17]
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The above equation is fully self-adjoint in the variable �p or �� which is the unknown. Now a
standard Galerkin-type procedure can be optimally used for spatial approximation. After completing
the calculation to establish �Ui , and �p (or ��) the energy equation is dealt with independently
and the value of (�E)n+1 is obtained by the characteristic-Galerkin process applied to Equation (4).

Choosing different values of �1, �2, the above equations can be solved in the form of explicit,
semi-implicit and nearly implicit. In fully explicit form, 1

2��1�1 and �2 = 0. In semi-implicit
form, 1

2��1�1, 1
2��2�1. Finally, in nearly implicit form both parameters �1 and �2 are unit [17].

It is clear that the governing equations can be solved after spatial discretization.

2.4. Spatial discretization using meshfree method

The meshfree method is used to establish a system of algebraic equations for the whole problem
domain without the use of a predefined mesh. MFree methods use a set of nodes scattered within the
problem domain as well as sets of nodes scattered on the boundaries of the domain to represent the
problem domain and its boundaries. These sets of scattered nodes do not form a mesh, which means
that no information on the relationship between the nodes is required, at least for field variable
interpolation. Therefore, construction of shape functions is the major part of MFree methods.

2.4.1. Shape functions construction. Construction of MFree shape functions is the central and
most important topic in MFree methods. The challenge is how to create shape functions using
only nodes scattered arbitrarily in a domain without any predefined mesh to provide connectivity
of the nodes. Development of more effective methods for creating shape functions is thus one of
the newest areas of research in the area of MFree methods. The size of domain that is used for
interpolation and consequently the number of nodes that is used for shape function construction
in each arbitrary point in problem domain must be very small compared with the whole problem
domain. Therefore, a support domain is defined as a small arbitrary area in each point. The shape
of support domains can be any arbitrary suitable simple shape such as circle or rectangle. The
size of support domains can be adequately chosen by analyst for every problem. Figure 1 shows
a problem domain with some kinds of arbitrary support domains.
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Figure 1. Some kinds of support domain definition.

A number of ways to construct shape functions have been developed such as SPH method
by Lucy [2] and Gingold and Monaghan [3] and RKPM by Liu et al. [22]. These methods are
classified in finite integral representation category. In finite series representation form, there are
some procedures such as moving least squares (MLS) method which was developed by Lancaster
and Salkauskas [23], PIM by Liu and Gu [24] and RPIM by Wang and Liu [25]. In this paper,
we describe MLS procedure in brief. For more information about shape function constructions in
meshfree method, reader can refer the literature [1].

2.4.2. Moving least squares approximation. MLS was initially introduced for data fitting and
surface construction in 1981 [23]. MLS was used for shape function construction in DEM by
Nayroles et al. [26]. The MLS approximation has two major features that make it popular: (1) the
approximated field function is continuous and smooth in the entire problem domain and (2) it is
capable of producing an approximation with the desired order of consistency [1].

2.4.3. MLS Procedure. Let u(x) be the function of the field variable defined in the problem
domain. The approximation of u(x) at point x is denoted uh(x). MLS approximation first writes
the field function in the form [1]

uh(x)=
m∑
j
p j (x)a j (x)≡ pT(x)a(x) (17)

where x is vector of position and m is the number of terms of monomials (polynomial basis),
and a(x) is a vector of coefficients. p(x) is a vector of basis functions that consists most often of
monomials of the lowest orders to ensure minimum completeness. A complete polynomial basis
of order m in two-dimensional space, is given by

pT(x)={1, x, y, xy, x2, y2, . . . , xm, ym} (18)
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Given a set of n nodal values for the field function u1, u2, . . . , un, at n nodes x1, x2, . . . , xn
that are in the support domain, Equation (17) is then used to calculate the approximated values of
the field function at these nodes:

uh(x, xI ) = pT(xI )a(x), I = 1, 2, . . . , n (19)

The weighted residual is defined as follows:

J =
n∑
I

�

W (x − xI )[uh(x, xI ) − u(xI )]2 =
n∑
I
Ŵ (x − xI )[pT(xI )a(x) − uI ]2 (20)

where W (x−xI ) is a weight function, and uI is the nodal parameter of the field variable at node I .
In MLS approximation, at an arbitrary point x, a(x) is chosen to minimize the weighted residual.
The minimization condition requires [1]

�J
�a

= 0 (21)

which results in the following linear equation system:

A(x)a(x)= B(x)Us (22)

where A(x) and B(x) can easily be obtained from Equation (20). Us is the vector that collects the
nodal parameters of the field variables for all the nodes in the support domain:

Us ={u1, u2, . . . , un}T (23)

Solving Equation (22) for a(x), we obtain

a(x)= A−1(x)B(x)Us (24)

Substituting the above equation back into Equation (17) leads to

uh(x)= pTA−1(x)B(x)Us (25)

or

uh(x)= N (x)Us (26)

where N (x) is the matrix of MLS shape functions corresponding to n nodes in the support domain.
Using these shape functions, the field variables can be easily written as follows:

Ui = NuŨi , �Ui = Nu�Ũi , �U∗
i = Nu�Ũ

∗
i

ui = Nuũi , p= Np p̃ and � = N��̃
(27)

In the above equation

Ũi =[U 1
i ,U 2

i , . . .Uk
i . . .Um

i ]T

and

N =[N 1, N 2, . . . Nk . . . Nm] (28)
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where k is the node (or variable) identifying number (and varies between 1 and m). Before
introducing the above relations, we have the following weak form of Equation (13) for the standard
Galerkin approximation (weighting functions are the shape functions) [17]:∫

�
Nk
u�U∗

i d� = �t
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−
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Nk
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�x j
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It should be noted that in the above equations the weighting functions are the shape functions
as the standard Galerkin approximation is used. Also here, the viscous and stabilizing terms are
integrated by parts and the last term is the boundary integral arising from integrating by parts the
viscous contribution.
The weak form of the density–pressure equation is∫
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In the above, the pressure and �U∗
i terms are integrated by parts. The weak form of the correction

equation is ∫
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The weak form of the energy equation can be written as follows∫
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The last step is the imposition of essential boundary conditions which will be discussed in the
next section.

2.5. Applying essential boundary conditions

Boundary conditions play a critical role in the solution of partial differential equations. In FEM,
inputting these conditions is not very difficult. There are standard procedures or techniques for
the implementation of the boundary conditions, in the form of either single point or multipoint
constraints. All the techniques developed in FEM are applicable (with some modifications) to
MFree methods.

MFree methods using PIM and RPIM shape functions possess the Kroenecker delta property.
In these methods, the imposition of the essential boundary conditions is the same as that in
FEM. In MFree methods using MLS approximations for constructing shape functions, special
techniques are required to impose essential boundary conditions, because the shape functions
created do not satisfy the Kroenecker delta conditions. There are some techniques for imposing
essential boundary conditions in meshfree methods using MLS approximations for constructing
shape functions such as Lagrange multipliers and penalty method. In this work, penalty method
has been used for applying essential boundary conditions. This method has some advantages and
some disadvantages [1].

• The dimension and positive definite property of the matrix are preserved, as long as the
penalty factors chosen are positive.

• The symmetry and bandedness of the system matrix are preserved.
• The results obtained are in general less accurate, compared with the method of Lagrange
multipliers.

• An essential boundary condition can never be precisely imposed. It is imposed only approx-
imately.

Despite these minor disadvantages, the penalty method is much more favourable for many
researchers. The penalty method has been frequently used in FEM for enforcement of single or
multipoint constraints [27]. The essential boundary conditions needed to be enforced have the form

n∑
i=1

Ni�i = N (x)�s = �(x, t) on �� (33)

where �(x, t) is the prescribed field variable on the essential boundary. It can be varied with
position vector and time. For example for pressure equation (Equation (30)) we have

p= p(x, t) on �p (34)

Using the Taylor series and eliminating higher-order terms (�t2, �t3, . . .), we have:

�p= �p
�t

�t (35)

Equation (35) can be written in following form:∫
�p

Nk
p�p d� = �t

∫
�p

Nk
p
�p
�t

d� (36)
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Multiplying Equation (36) by a suitable coefficient, � (penalty factor) and adding this equation to
Equation (30), we have

�
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∫
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∫
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p
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Choosing suitable large value of �, Equation (37) satisfies the essential boundary condition which
is represented in Equation (36). It should be noted that applying very large penalty coefficient
causes ill conditioning.

Other boundary conditions can be imposed in the same manner. After spatial representation of
the general equations of fluid dynamics, the relating partial differential equations can be easily
changed to a system of linear algebraic equations in every time steps. Solving these algebraic
equations, the field variables of the fluid flow can be obtained.

3. RESULTS AND DISCUSSION

In this work, a new finite element and MFree code is developed for solving flow problems. The
finite element code is developed based on the general algorithm of CBS method which has been
completely described in the literature [17]. The meshfree computational code is developed based
on the meshfree CBS algorithm which has been discussed in the above. This computational code
is capable of solving both time-dependent and steady-state flow problems. Numerical simulation
of some known benchmark flow problems has been studied.

3.1. Case study #1

Lid-driven cavity flow in a square [0, 1] × [0, 1], as shown in Figure 2 has been studied. To have
more accurate solution, numerical analysis has been done for non-uniform scattered nodes (M1:
40× 40 nodes) as shown in Figure 3(a). As may be seen in Figure 3(a), the highest density of
nodes is to be found near the lid and walls. This is done in order to resolve adequately the very thin
boundary layers on the lid and cavity walls. Figure 3(b) shows three different grids with different
irregularities of scattered nodes: (M2: 20× 20 nodes), (M3: 20× 20 nodes) and (M4: 20× 20
nodes). Using these grids, the effect of irregularity of nodes on the solution has been discussed.

The first numerical results correspond to the solution of the Navier–Stokes equations on grids
(M1). Figure 4(a) compares profiles of u along the line x = 0.5 computed with MFree method
and FEM with the different Reynolds numbers. Figure 4(b) compares profiles of v along the line
y = 0.5 computed with MFree method and FEM with the different Reynolds numbers. In this
solution MLS shape functions are used for field variables interpolation. The Reynolds number for
this flow is based on the lid velocity and cavity height. Good agreement in the both graphs can
be seen. Figure 5 compares profiles of u along the line x = 0.5 computed with MFree method
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Figure 2. Lid-driven cavity flow in a square [0, 1] × [0, 1].

Figure 3. (a) M1: 40× 40 nodes distributed non-uniformly in the problem domain.
(b) Three different grids with different irregularities.

and FEM with nodes irregularly distributed in the problem domain. Some perturbation is observed
in the solution which used very irregular nodes distributions. However, MFree method shows
stable solution even with irregular nodes distributions. Figure 6 compares MFree results by using
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Figure 4. (a) Profiles of u along the line x = 0.5 computed with MFree method and FEM at
different Reynolds numbers. (b) Profiles of v along the line y = 0.5 computed with MFree

method and FEM at different Reynolds numbers.

different shape functions. Table I compares MFree results with some known data in the literature
[28]. The table shows the results of MFree method by using different shape functions. According
to the results obtained from 40× 40 nodes, MFree method has good agreement with other results
obtained from very finer grids [28]. It shows maximum error of 3% at Re= 1000. It can be observed
that the Mfree method is more accurate than FEM. Figure 7 compares profiles of u along the line
x = 0.5 computed with MFree method and FEM at high Reynolds number (Re= 10 000). It can
be observed that Meshfree CBS algorithm is completely stable even at high Reynolds numbers.
Figure 8 shows the effect of the number of Gaussian integration points on the accuracy of the
solution. The normalized error is evaluated from following formula:

‖e‖=
∣∣∣∣Max(u − uaccurate)

uaccurate

∣∣∣∣ (38)
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Figure 5. Profiles of u along the line x = 0.5 computed with MFree method and FEM
using irregular node distributions (Re= 0).
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Figure 6. MFree results using different shape functions (Re= 0).

where u is the evaluated absolute velocity of arbitrary point in the problem domain. The accuracy
of the solution increases with the increase of the Gaussian points. Using high number of Gaussian
points increases the CPU time significantly.

3.2. Case study #2

Numerical simulation of flow past a backward facing step, as shown in Figure 9 has been studied.
The geometric parameter of the problem is as follows:

L inlet = 5 cm,
Lchannel = 12 cm,
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Table I. Verification of MFree results with some data in the literature.

Reference umin ymin vmax xmax vmin xmin

Re= 0
FEM −0.20695 0.53 0.1831 0.21 −0.18387 0.79
Present, MLS −0.20825 0.54 0.180826 0.20 −0.18163 0.80
Present, PIM −0.21038 0.54 0.183491 0.21 −0.184167 0.79
Present, RPIM −0.208634 0.54 0.182211 0.21 −0.183134 0.79
Ghia et al. [28] — — — — — —

Re= 400
FEM −0.3334 0.28 0.31098 0.23 −0.4646 0.87
Present, MLS −0.33038 0.28 0.30857 0.22 −0.4559 0.86
Ghia et al. [28] −0.32726 0.2813 0.30203 0.2266 −0.44993 0.8594

Re= 1000
FEM −0.4040 0.16 0.3939 0.16 −0.5504 0.91
Present, MLS −0.3934 0.17 0.383125 0.16 −0.5301 0.91
Ghia et al. [28] −0.38289 0.1719 0.37095 0.1563 −0.51550 0.9063

Note: umin: The minimum u velocity along the line x = 0.5; ymin: The y position of the minimum u velocity
along the line x = 0.5; vmax: The maximum v velocity along the line y = 0.5; xmax: The x position of the
maximum v velocity along the line y = 0.5; vmin: The minimum v velocity along the line y = 0.5; xmin: The
x position of the minimum v velocity along the line y = 0.5.
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Figure 7. Profiles of u along the line x = 0.5 computed with MFree method and FEM at high Reynolds
number (Re= 10 000) (with 3600 nodes).

hinlet = 0.5 cm,
s = 0.471 cm.

The Reynolds number is defined as follows:

Re= 2
3�umax2hinlet/� (39)
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Figure 9. A schematic shows flow past backward facing step.

Figure 10. N1: 634 nodes.

Figure 11. N2: 1756 nodes.

In the present work, two different grids are employed: coarse (Ml: 634 nodes), and fine (M2: 1756
nodes) as shown in Figures 10 and 11, in order to investigate grid dependency of the solution. To
have more accurate solution, numerical analysis has been done for non-uniform scattered nodes
as shown in Figures 10 and 11.

The first numerical results correspond to the solution of the Navier–Stokes equations on two
different grids (M1, M2) at different Reynolds numbers. Figures 12–14 show streamline in flow
past a backward facing step at different Reynolds numbers. As the Reynolds number increases, the
position of reattachment point increases too. In higher Reynolds numbers, for example, Re= 800
there is no stable location for reattachment point and it changes frequently with time. Figure 15
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Figure 12. Streamlines in flow past a backward facing step, Re= 100.

Figure 13. Streamlines in flow past a backward facing step, Re= 200.

Figure 14. Streamlines in flow past a backward facing step, Re= 400.
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Figure 15. Unsteady profiles of u along the line x = 6 at different times.

shows unsteady profiles of u along the line x = 6 at different times. The inlet velocity has been
calculated as shown in Figure 16, from the following equation:

Uinlet(t)

Umax(y)
= 1 − exp(−3t) (40)
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Figure 17. Position of the reattachment point.
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Figure 18. The comparison of the position of reattachment point predicted by meshfree method and
experimental [24] data and other numerical data [29].

Umax(y) is a parabolic curve which is zero at walls:

Umax(y)

umax
= 4

h2inlet
y(hinlet − y) (41)

In Figure 17 schematic can be seen that shows the position of reattachment point. Figure 18
compares the values of position of reattachment point computed by MFree method and other
experimental [30] and numerical data [29] in the literature. It is clear that MFree results are very
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Figure 19. Geometry of centric cylinders.

Figure 20. Nodes distribution in the problem domain.

close to experimental data. This meshfree algorithm (Meshfree CBS) shows more accurate results
compared with other meshfree results reported in the literature [29].
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Figure 21. Radial component of velocity between centric rotating cylinders.

Figure 22. Geometry of eccentric cylinders.

3.3. Case study #3

In this case, numerical simulation of fluid flow between rotating cylinders is studied. Outer cylinder
is fixed and inner cylinder is rotating. At first, as shown in Figure 19, it is assumed that cylinders
are centric. Figure 20 shows nodes distribution used for numerical analysis of this flow. According
to the analytical solution of this flow radial component of velocity is as follows [31]:

u�(r) = A
R

2
+ B

r
(42)
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Figure 23. Nodes distribution in the problem domain.
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Figure 24. Radial component of velocity between eccentric rotating cylinders.

where A and B can easily be obtained by applying boundary conditions. Figure 21 compares
numerical analysis obtained from meshfree CBS method with analytical solution using these data:

Inner diameter: 0.02.
Outer diameter: 0.04.
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Figure 25. Radial component of velocity between eccentric rotating cylinders.

Figure 26. Streamlines between eccentric rotating cylinders.

Inner angular velocity: 1.0.
Outer angular velocity: 0.0.

It is clear that numerical analysis completely agree with analytical solution.
Numerical analysis of fluid flow between eccentric cylinders has also been studied. Figures 22 and
23 show the geometry and nodes distribution of the problem domain. The value of eccentricity
is 0.005. Figure 24 compares radial component of velocity in the right side of rotating cylinder
obtained from the meshfree method with those of the finite element. Figure 25 compares radial
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component of velocity in the left side of rotating cylinder obtained from the meshfree method with
those of the finite element. It is clear that there is a good agreement between meshfree results
and FEM results. Figure 26 shows streamlines between eccentric rotating cylinders. Eccentricity
causes a crescent-shaped vortex to be developed.

4. CONCLUSION

The general equations of fluid dynamics have been discretized in the meshfree context. CBS
algorithm has been used for this purpose. A new finite element and MFree code was developed
for solving flow problems. This computational code is capable of solving both time-dependent and
steady-state flow problems. Numerical simulation of some known benchmark flow problems has
been studied. Computational results of MFree method have been compared to those of finite element
method. The results obtained have been verified by known experimental, analytical and numerical
data in the literature. According to the results obtained, it can be observed that the Mfree method
is more accurate than FEM if the same numbers of nodes are used for each solver (Table I). It can
be observed that Meshfree CBS algorithm is completely stable even at high Reynolds numbers
(Figure 7). MFree results are very close to experimental data. Meshfree CBS algorithm shows
more accurate results compared with other meshfree results reported in the literature [29] (Figure
18). A number of shape functions are used for field variable interpolation. The performance of
each interpolation method is discussed. The effect of the number of Gaussian integration points
on the accuracy of the solution has been discussed. The accuracy of the solution increases with
the increase of the Gaussian points.
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